268 research outputs found

    Rank Maximal Matchings -- Structure and Algorithms

    Full text link
    Let G = (A U P, E) be a bipartite graph where A denotes a set of agents, P denotes a set of posts and ranks on the edges denote preferences of the agents over posts. A matching M in G is rank-maximal if it matches the maximum number of applicants to their top-rank post, subject to this, the maximum number of applicants to their second rank post and so on. In this paper, we develop a switching graph characterization of rank-maximal matchings, which is a useful tool that encodes all rank-maximal matchings in an instance. The characterization leads to simple and efficient algorithms for several interesting problems. In particular, we give an efficient algorithm to compute the set of rank-maximal pairs in an instance. We show that the problem of counting the number of rank-maximal matchings is #P-Complete and also give an FPRAS for the problem. Finally, we consider the problem of deciding whether a rank-maximal matching is popular among all the rank-maximal matchings in a given instance, and give an efficient algorithm for the problem

    Temporally invariant junction tree for inference in dynamic bayesian network

    Full text link

    The Network Analysis of Urban Streets: A Primal Approach

    Full text link
    The network metaphor in the analysis of urban and territorial cases has a long tradition especially in transportation/land-use planning and economic geography. More recently, urban design has brought its contribution by means of the "space syntax" methodology. All these approaches, though under different terms like accessibility, proximity, integration,connectivity, cost or effort, focus on the idea that some places (or streets) are more important than others because they are more central. The study of centrality in complex systems,however, originated in other scientific areas, namely in structural sociology, well before its use in urban studies; moreover, as a structural property of the system, centrality has never been extensively investigated metrically in geographic networks as it has been topologically in a wide range of other relational networks like social, biological or technological. After two previous works on some structural properties of the dual and primal graph representations of urban street networks (Porta et al. cond-mat/0411241; Crucitti et al. physics/0504163), in this paper we provide an in-depth investigation of centrality in the primal approach as compared to the dual one, with a special focus on potentials for urban design.Comment: 19 page, 4 figures. Paper related to the paper "The Network Analysis of Urban Streets: A Dual Approach" cond-mat/041124

    TomograPy: A Fast, Instrument-Independent, Solar Tomography Software

    Full text link
    Solar tomography has progressed rapidly in recent years thanks to the development of robust algorithms and the availability of more powerful computers. It can today provide crucial insights in solving issues related to the line-of-sight integration present in the data of solar imagers and coronagraphs. However, there remain challenges such as the increase of the available volume of data, the handling of the temporal evolution of the observed structures, and the heterogeneity of the data in multi-spacecraft studies. We present a generic software package that can perform fast tomographic inversions that scales linearly with the number of measurements, linearly with the length of the reconstruction cube (and not the number of voxels) and linearly with the number of cores and can use data from different sources and with a variety of physical models: TomograPy (http://nbarbey.github.com/TomograPy/), an open-source software freely available on the Python Package Index. For performance, TomograPy uses a parallelized-projection algorithm. It relies on the World Coordinate System standard to manage various data sources. A variety of inversion algorithms are provided to perform the tomographic-map estimation. A test suite is provided along with the code to ensure software quality. Since it makes use of the Siddon algorithm it is restricted to rectangular parallelepiped voxels but the spherical geometry of the corona can be handled through proper use of priors. We describe the main features of the code and show three practical examples of multi-spacecraft tomographic inversions using STEREO/EUVI and STEREO/COR1 data. Static and smoothly varying temporal evolution models are presented.Comment: 21 pages, 6 figures, 5 table

    FQL: An Extensible Feature Query Language and Toolkit on Searching Software Characteristics for HPC Applications

    Get PDF
    The amount of large-scale scientific computing software is dramatically increasing. In this work, we designed a new query language, named Feature Query Language (FQL), to collect and extract HPC-related software features or metadata from a quick static code analysis. We also designed and implemented an FQL-based toolkit to automatically detect and present software features using an extensible query repository. A number of large-scale, high performance computing (HPC) scientific applications have been studied in the paper with the FQL toolkit to demonstrate the HPC-related feature extraction and information/metadata collection. Different from the existing static software analysis and refactoring tools which focus on software debug, development and code transformation, the FQL toolkit is simpler, significantly lightweight and strives to collect various and diverse software metadata with ease and rapidly

    THE NAS PARALLEL BENCHMARKS

    Get PDF
    The Numerical Aerodynamic Simulation (NAS) Program, which is based at NASA Ames Research Center, is a large-scale effort to advance the state of computational aerodynamics. Specifically, the NAS organization aims &dquo;to provide the Nation’s aerospace research and development community by the year 2000 a highperformance, operational computing system capable of simulating an entire aerospace vehicle system within a computing time of one to several hours&dquo; (NAS Systems Division, 1988, p. 3). The successful solution of this &dquo;grand challenge&dquo; problem will require the development of computer systems that can perform the required complex scientific computations at a sustained rate nearly 1,000 times greater than current generation supercomputers can achieve. The architecture of computer systems able to achieve this level of performance will likely be dissimilar to the shared memory multiprocessing supercomputers of today. While no consensus yet exists on what the design will be, it is likely that the system will consist of at least 1,000 processors computing in parallel. Highly parallel systems with computing power roughly equivalent to that of traditional shared memory multiprocessors exist today. Unfortunately, for various reasons, the performance evaluation of these systems on comparable types of scientific computations is very difficult. Relevant data for the performance of algorithms of interest to the computational aerophysics community on many currently available parallel systems are limited. Benchmarking and performance evaluation of such systems have not kept pace with advances in hardware, software, and algorithms. In particular, there is as yet no generally accepted benchmark program or even a benchmark strategy for these systems

    Immersed boundary-finite element model of fluid-structure interaction in the aortic root

    Get PDF
    It has long been recognized that aortic root elasticity helps to ensure efficient aortic valve closure, but our understanding of the functional importance of the elasticity and geometry of the aortic root continues to evolve as increasingly detailed in vivo imaging data become available. Herein, we describe fluid-structure interaction models of the aortic root, including the aortic valve leaflets, the sinuses of Valsalva, the aortic annulus, and the sinotubular junction, that employ a version of Peskin's immersed boundary (IB) method with a finite element (FE) description of the structural elasticity. We develop both an idealized model of the root with three-fold symmetry of the aortic sinuses and valve leaflets, and a more realistic model that accounts for the differences in the sizes of the left, right, and noncoronary sinuses and corresponding valve cusps. As in earlier work, we use fiber-based models of the valve leaflets, but this study extends earlier IB models of the aortic root by employing incompressible hyperelastic models of the mechanics of the sinuses and ascending aorta using a constitutive law fit to experimental data from human aortic root tissue. In vivo pressure loading is accounted for by a backwards displacement method that determines the unloaded configurations of the root models. Our models yield realistic cardiac output at physiological pressures, with low transvalvular pressure differences during forward flow, minimal regurgitation during valve closure, and realistic pressure loads when the valve is closed during diastole. Further, results from high-resolution computations demonstrate that IB models of the aortic valve are able to produce essentially grid-converged dynamics at practical grid spacings for the high-Reynolds number flows of the aortic root

    An statistical analysis of stratification and inequity in the income distribution

    Full text link
    The analysis of the USA 2001 income distribution shows that it can be described by at least two main components, which obey the generalized Tsallis statistics with different values of the q parameter. Theoretical calculations using the gas kinetics model with a distributed saving propensity factor and two ensembles reproduce the empirical data and provide further information on the structure of the distribution, which shows a clear stratification. This stratification is amenable to different interpretations, which are analyzed. The distribution function is invariant with the average individual income, which implies that the inequity of the distribution cannot be modified by increasing the total income.Comment: 22 pages, 3 figure
    • …
    corecore